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The dyon-electron system: scattering and electron capture 

S K Bose and C C Choof 
Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA 

Received 20 September 1989, in final form 20 March 1990 

Abstract. Two aspects of the non-relativistic dyon-electron system are studied, first the 
dyon-electron scattering and second, electron capture by a dyon. 

1. Introduction 

We continue the programme of studying various aspects of the non-relativistic dyon- 
electron system. In an earlier publication (Bose 1986) the bound-state problem was 
solved; the energy levels obtained and the bound-state wavefunctions constructed 
explicitly. Moreover, the light absorption characteristic of the system was considered 
and the absorption cross section computed for the case where the initial system is in 
the ground state. In this paper, we concentrate on problems associated with the 
non-bound dyon-electron system. Specifically, we consider the problems of scattering 
and electron capture by dyons. This paper is organised as follows. In the next section 
we obtain the positive-energy solutions of the eigenvalue equation. In section 3, the 
wavefunctions appropriate to the picture of an incoming fermion with a definite helicity 
are constructed. These results are utilised in the next two sections. In  section 4 the 
scattering problem is solved. The resulting scattering amplitude is checked to possess 
correct limiting forms for two cases; namely, the monopole-fermion scattering and 
the Rutherford scattering. Finally, in section 5 ,  electron capture by a dyon leading to 
a bound system in its ground state is considered. The capture cross section is obtained 
for the case where the magnetic charge of the dyon is one Dirac unit and the initial 
particle is slowly moving. The result is compared with the corresponding case of 
electron capture by a proton leading to hydrogen atom formation. 

2. Positive-energy wavefunctions 

We denote by M the electron mass and by - e  the electron charge. The dyon charge 
and magnetic pole strength are Q and g, respectively. We use natural units and set 
q = -eg.  The Schrodinger-Pauli Hamiltonian 

with 

r r = p + e A  (2) 
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where A is the vector potential of the dyon (Dirac expression), leads to the eigenvalue 
equation 

H * = E ' P  (3) 

which is subjected to angular momentum analysis using the two-component angular 
eigensection e$), 6:;) and 7, of Kazama et a1 (1977). Equation (3) is then found to 
possess three types of positive energy ( E  > 0) solutions. Setting 

k = ( 2 M E ) " '  A = -  (4) 

these solutions can be written as follows: 
type 1 

type 2 

type 3 

q;: = e-'"ra-' ,F1(a -iA, 2a, 2ikr)S:),' 

q;: = e-'"r",F,(a + 1 -iA, 2a  $2, 2ikr) t : ; )  

V\y.::=e-'krlF,(l -iA,2,2ikr)Tm J = ) q /  -:. (4c)  

J 3 / q /  +; (40 )  

(4b)  J z l q l + $  

In the above, , F ,  is the confluent hypergeometric function. 

Here we note the general result: 
We shall later need the asymptotic expressions of the radial wavefunction as r + =o. 

which is valid as /zI + 00. 

3. Scattering wavefunctions 

We consider an  electron coming in from infinity along the positive z axis with the 
dyon fixed at the origin. The wavefunction describing the scattering of the helicity *1 
electron will be constructed by a superposition of the wavefunction (4), obtained above. 

The coefficients = K  will be fixed by the requirement that as r +  00, the incoming part 
of the right-hand side of (6) matches the incoming part of the incident 'Coulomb 
distorted plane wave'. The latter is easily constructed from the exact Coulomb 
wavefunction, and  is found to be given by the expression 

S(1-cos e)(;) exp[ -i( kr - A In 2kr)l  
ikr 

- 

for helicity 1 and  by 

exp[ -i( kr - A In 2kr)l  
ikr 6(1  -cos e)  - 
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exp[ -i( kr - A In 2kr)l  
ikr 

6 ( 1  -cos 8 )  [ T q l i n c +  - 

for helicity -1, as r + m .  Using now the expressions for the two-component spinors 
in terms of the complete set of angular sections given by Kazama et a1 (1977), we 
obtain the desired expressions, as r + E, for the incoming wave: 

ti!>: + E l : ) )  
( s a )  

to E. For the where m stands for -q - $  and the summation extends from J = / q /  + 
negative helicity, we obtain 

( 8 b )  

where m stands for -q + 1 and the summation extends from J = 141 + 1 to cc. The above 
expressions are valid in the region a, in the notation of Kazama et a1 (1977) which is 
the sphere minus a strip containing the south pole. It is enough to match the wave 
sections in this region. We are now in a position to compute the coefficients * K that 
appear in (6).  From the explicit expressions, given by equation (4), for VT"' ( i  = 1 ,2 ,3 ) ,  
we compute the asymptotic form, as r + s, of the incoming part of the right-hand side 
of equation (6) and match the result against equation (8). We thus obtain 

' ' q T ( a + l + i A )  (2k)"" 
'K::= - - ( 2 5 + 1 )  (5 ) r ( 2 a t 2 )  i k  

K 2 ' = 1 2 A (  1 q 1 I q ) ' 'r( 1 + i  A 1 exp ( - T A  / 2 ) S ,,? + I I, ,, . (9d )  

our scattering wavefunction is now completely determined. It is given by equation (6) 
with VTi: ( i  = 1 , 2 , 3 )  given by equation (4) and the coefficients * K : m  ( I  = 1 ,2 ,3 )  by 
equation (9). 

4. Scattering amplitude 

The outgoing part of the scattering wavefunction is defined by 

=VT = * V T , n c +  -VIout 

and  the scattering amplitude f is given by 

exp[i( kr - A  In 2kr)l  
* q " " f +  f ' ( 6 )  r 
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as r + a .  Calculating the asymptotic form of *q using ( 5 )  and comparing with ( 1 1 )  
we obtain the scattering amplitude 

where m = -q - f  for f + and m = - q + f  for f - .  We wish now to analyse f * in terms 
of amplitudes that describe scattering in which the outgoing fermion has definite 
helicity. Let C' denote the normalised helicity eigenstates. Following the treatment 
in Kazama et a1 (1977), we can then find the connection between the helicity eigenstates 
4'' and the angular sections .$,, ( i  = 1,2)  and vm. We thus obtain for the case m = -q - f  

1 

J J  - 1 (5 YJ-i/Z,m+i/Z-= Y J + l / ? , m + 1 / 2  

q e-'* tjA'+ 6;;) = - 
JZ[(25+ 1 ) ( 1  +COS e)]"2 

2J+ 1 -2q 
yJ- I / z . m T  I: 2 + m y J + 1 f 2 , m + i  2 ) i - .  (13b) 

In the above, Y is the monopole spherical harmonics (Wu and Yang 1976) YqJm with 
the index q suppressed. Similarly, for the case m = -q + f ,  we find 

q ( I  -cos e" 
f i l q l  2 ~ + 1  sin e 

2J+ 1 - 2 q  

6;; - [;;J =- ~ 

- 

23 + 1 +2q ( f i  YJ-1,2,m-i/2+ (13cj 

As for q m ,  we have the results 

Use of the above relations allows us to pick up the helicity-flip and helicity-nonflip 
amplitudes from (12). We thus obtain 
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where 

2 J + 1 + 2 q  2 J +  1 -2q 
y J - 1 / 2 . - q +  Y J + l , 2 , - q  x ( JJ m 

and 0 = T - 6 is the scattering angle. From the property Y:Jm = ( - l ) q + m Y - 4 , J s - m  (Wu 
and Yang 1976) it is easy to see that all the monopole spherical harmonies that appear 
in equations (14)-(17) are even in q, and therefore 

In view of the above, it is thus sufficient to confine ones attention to the case q 3 0. 
With this restriction on q, we shall now obtain the final form of our scattering amplitudes. 
We put in the expressions for the monopole spherical harmonics in terms of the Jacobi 
polynomials (Wu and Yang 1976) and thus obtain 

-- 2-4 - ( 1  + ~ ) 4 ( 1  - X I  n + 4 +  1 pf1,24 

6 n + l  

2 J +  1 +2q 2 j i l - 2 q  
fi y J - I / 2 , - q +  m y J + I / Z . - q  

2 J +  1 -2q 2 J +  1 +2q 
fi y J - l , 2 , - q +  m y J + I  2 , - q  
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In the above x = cos 0 = -cos 0 and n = J - q -A. In the second step of the equations 
(20)-(22), we used standard identities for the Jacobi polynomials (ErdClyi 1953). 
Finally, the above expressions are valid in the region a which is the sphere minus a 
strip around the south pole. In region b, which is the sphere minus a strip around the 
north pole, the right-hand sides of equations (20)-(22) have to be multiplied by the 
factor exp( -2iq4).  Collecting our results (14)-(22) and introducing the notation 

a - i A  
b=-  

a + i A  
I-( a + 1 + i A ) = i r( a + 1 + i A ) 1 e'"', (23) 

we now write down the final form of our scattering amplitudes: 

1 n + q + l  
f + T = - c o s f @ ( s i n @ ) ' q  a ( l + b ) e - ' ~ " e ' " ' ~ ~ p ~ ' Y ( c o s  0 )  

2 k  n - 0  n + l  

(24d j 

Note that in terms of the new summation variable, a is given by 

a = [(n + l ) ( n  + 1 + 2 q ) ] l  2 .  ( 2 5 )  

Moreover, the Jacobi polynomials can be expressed in terms of the scattering angle 
0 by use of the identity 

p y ( - x )  = (-l)"p;."(x). (26) 

We also note that the effect of dyon's electric charge is quite prominent in the helicity-flip 
amplitudes. We should now check two limiting cases. 

In the limit of vanishing dyon electric charge ( Q  = 0)A = 0 and  consequently b = 1. 
Now f +- vanishes identically as does the first term in (24d) forf- '  and f T f  undergoes 
corresponding simplification. The resulting expressions are identical with those 
obtained by Kazama et a1 (1977) for the monopole fermion scattering. Of course, the 
latter authors had treated the problem relativistically, by solving the Dirac equation, 
whereas our  treatment is non-relativistic. But this distinction leads only to a kinematic 
difference in the relation that connects the momentum k with energy. Expressed in 
terms of the variable k, the scattering amplitudes are one and the same. 

A second limiting case to study is the vanishing of the magnetic charge g of the 
dyon. Now q = 0 and a = n + 1 and the relevent Jacobi polynomials are expressible in 
terms of Legendre polynomials as follows: 

1 
1 - x  (27a) 

I O  
P n '  (XI =- ( ~ n ( x ) - ~ , t + I ( x ) )  
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We see from (24) and (27) that 
f - +  = - e2 i6 f+-  

X 1 
f"= --sec@ c ( n + l ) ( b + l )  e'"',~-l(p,(cosO)+pn,,(cos 0)). ( 2 8 ~ )  

4k n - 0  

It is convenient to analyse the above relations by introducing the following combina- 
tions of helicity amplitudes: 

(2%) 

(29b) 

(29c) 

g-  = sin $of-' +cos f@f-- .  (29d) 

Actually, g'+, g-- are the spin-non-flip and  g*-, g-+ the spin-flip amplitudes, as is 
not hard to verify. From (28) and (29) it follows directly that 

g++ = cos i@f++ - eld sin +of'- 
gT- = e-" sin ;Of++ +cos $Of+-  

g-+ = cos $of-+ -e1* sin ;of-- 

e2'* g .  + -  (30) g-+ = - g+- = g-- 

Using the result 

(31) b e2lrrt1+i = e21rrjj 

we now put g+-  into the form 

By use of the identity 

it is easily proved that 

gt- = 0. 

Again use of (31) leads to the following 

(34) 

The above series is well known. Specifically 

g+-  = g-- = _ _  A e2i,,,,2,h (1 -cos 
k 1 -cos 0 

which is recognised to be the correct Coulomb scattering amplitude that leads to the 
Rutherford formula for the differential cross section. 
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3. Electron capture by dyons 

Let us consider the process in which an incoming electron is captured into a bound 
orbit by a positively charged dyon, with the emission of a photon. We propose to 
calculate the cross section for this process, in the dipole approximation, for the case 
where the capture takes place into the ground state of the dyon-electron bound system. 
In  the dipole approximation the capture cross section is 

where w = Ei - Er = Ei + /Erl is the photon energy, cy the fine structure constant, k the 
incoming electron momentum. Introducing the 'Bohr' radius a, = 1/ MeQ, equation 
(37) can be written as 

where A has been defined in (4). The initial state Ii) that appears above is given by 
equations (6) and (9) of section 2. The final ground state of the sound system has 
already been calculated by us (Bose 1986). Thus we have everything needed for the 
evaluation of the dipole matrix element. Finally, we have to average over the two 
initial-state configurations for initially unpolarised electrons. 

We consider the case q = * t f .  The final state is 

9, = -2k' e-k'r770 (39) 

where k ' =  (-2MEf)' '. The dipole matrix element factorises into radial and angular 
parts. Clearly, only the j = 1 terms in the initial state survive the angular integration. 
The corresponding angular matrix elements are 

(40a) I 1 1  - 
(7701 Y1a151m) - -&n+a ,o -  Js;; 141 = t  

q =  it. 

The radial integrals appearing, respectively, in the matrix elements r /  +:!,!,) and 
(flrii,b:2) are given by 

lox d r  r2+" exp[-( k '+  ik)r] ,F,(d? - iA, 2 4  2ikr) 

exp[ -( k'+ i k)r] ,  F 1 ( a +  1 - iA, 2 a  + 2,2ikr). (41 b )  

The integrals can be evaluated closely provided k is suitably small, namely, k ' >  &k 
by use of the formula (Gradshteyn and Ryzhik 1965) 

d r  ,.3+\1 

I,' e-S'fh-l ,Fl(ar c, k t )  d t = r ( b ) s - " F ( a ,  b, c, k s - ' )  (42) 

where F is the hypergeometric function and the result is valid provided the condition 



The dyon-electron system ; scattering and electron capture 2969 

1st > Ikl is satisfied. Collecting our results (40)-(42) together, we have 

where the abbreviations 

f i -  ih, 3 +a, 2 A ,  - 
k + i k  

have been used, and  the * sign in (436) (corresponds to q = it. It is now straightfor- 
ward to compute the cross section. It is instructive to consider the limiting case of a 
very slowly moving incoming electron, k +- 0. It is intuitively obvious that this is the 
most favourable setup for capture. In this limit A + 00 and the hypergeometric functions 
go over to the confluent hypergeometric functions, F( a,  b, c, x) + F,( b, c, ax) as la!  --* E. 
The resulting expressions are then easy to evaluate numerically. In this manner, we 
obtain for the capture cross section for initially unpolarised electrons the limiting result 

For the sake of comparison, the corresponding capture cross section for a proton 
(leading to the formation of a hydrogen atom) is 

2 2  

uH = 15.4a( :) . 

Thus the ratio of our cross section to that for hydrogen formation, compared at the 
same initial electron momentum, is 0.4 (Ole)'. 

In conclusion, we have studied two aspects of the non-relativistic dyon-electron 
system. First, the scattering problem has been solved. The resulting scattering ampli- 
tudes have been shown to possess correct behaviour under two limiting cases. These 
are the limits where the electric charge of the dyon is set equal to zero and  where the 
magnetic pole strength of the dyon is set equal to zero. The problem of electron capture 
by a positively charged dyon leading to the formation of a dyon-electron bound state 
has also also been solved for the special case where the bound system is in its ground 
state. In  a subsequent publication, the capture cross section for excited states of the 
bound system as well as a computation of the recombination coefficient will be 
attempted. 
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